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& Overview of Squeeze-Films i

RKSHOP

Squeeze-film flows

A Relative normal motion of surfaces separated by a thin film of
viscous fluid

A Surfaces trying to squeeze fluid out of the interface (and vice versa)
A Induced hydrodynamic pressure tends to oppose motion of surfaces

viscous fluid
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A Squeeze effect often used in mechanical vibration dampers

A Common applications:
I High-performance turbojet and turboshaft engines
I Microelectromechanical systems (MEMS)

I Nature (e.g. synovial joints)
Fluid inlet

’_{ Squirrel cage (spring)
/ 1 E

Synovial fluid

Squeeze-film

Ball bearings Frame

Schematic of a squeezéim in the knee Schematic of SFD in turbojet aircraft engine
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Damping via viscous dissipation
A Viscosity of the fluid is crucial for effectiveness
A Problem: viscosity typically diminishes with increased temperature
A Potential solution: leverage magnetohydrodynamic forces

Small length scales
A Classical lubrication theory assumes negligible inertia

A High-frequency motion/decreased viscosity brings this assumption
Into question

A Small length scale of flow amplifies effect of surface roughness
A How does roughness structure of the surfaces affect the flow?
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Outline

Part |: quasi-steady analysis

1.

2
3.
4

Develop a general governing equation for MHD squeeze-films
Introduce fractals for modeling real surface topography
Apply the FEM to solve the flow problem

Conduct quasi-steady numerical studies

Part II: transient analysis

1.

Incorporate MHD squeeze-film model into a nonlinear mass-spring-
damper model

Apply implicit time-integration to solve nonlinear equation of motion

Conduct time-domain numerical studies to evaluate MHD damper
performance
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Governing Flow Equations

Classical Reynolds equation
A Famously derived by O. Reynolds in 1886

A Reduction of the Navier-Stokes equations based on arguments of
scale

A Assumptions:

I Rex'1

I Newtonian fluid and incompressible flow

I Gravity negligible

I Pressure invariant over depth (i.e. the thin-film assumption)
A Poisson-type PDE for pressure:

p = hydrodynamic pressure
h = film thickness

V- (&-vp) =2 o

t — = squeeze velocity

ot

n = viscosity

Note: This is a O6squeezed variant of Reynoldsdé original derivatio
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Governing Flow Equations

Magnetohydrodynamics (MHD)
A Interaction between conducting fluids and magnetic fields
A Based on the Lorentz force

fr=J x B where: B = magnetic field
J = current density

A Appears as a body force in the Navier-Stokes equations
A Couples the fluid dynamics and electrodynamics

pre-Maxwell equations Navier-Stokes equations
V-E=0 (Gauss’ electricity law) Couple By + (1~ V) + o) VP f=0 (momentum)
V-B=0 (Gauss’ magnetism law) fo=JxB P
Vx E=-0,B (Faraday’s law) V-u=0 (mass)
VxB=npudJ (Ampere’s law)
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& Governing Flow Equations NFA

RKSHOP

Magnetic Damping -
H
A Lorentz force a result of
magnetic stress \Bﬁ
A Magnetic field lines deformed 4 i

by flow J{
AATensiono in the ¥®ilel d

Yoy vy

opposite of the flow [ " - i
1

Augmenting role of viscosity in
SFDs

A Assume the fluid is an
electrical conductor

A Apply vertical magnetic field
across film
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Governing Flow Equations

Derivation of the MHD Reynolds equation with temporal inertia
1. Point-of-departure

4 )

MHD Equations

p(dru+ (u-V)u) + Vp — nVu—J x B=0 (momentum)
OB -V x (uxB)—aV?’B=0 (induction)
V-u=0 (mass)
V-J=0 (
J—¢(uxB)=0 (closure: Ohm'’s law)
. /

charge)

2. Perform dimensional analysis

Parameter Definition Description

Aspect ratio £= hf“ Ratio of film thickness to lateral dimension
Reynolds number Re = % Ratio of inertial to viscous forces

Squeeze Reynolds number Res = p—hfﬂ Frequency-based Reynolds number
Magnetic Reynolds number Re,, = [|ul|usho Ratio of advection to magnetic diffusion
Hartmann number Ha = ||B ||ho\/% Ratio of Lorentz to viscous forces

TFAWS 2018 1 August 20-24, 2018 10



Governing Flow Equations

Derivation of the MHD Reynolds equation with temporal inertia

3. Impose assumptions
I.  Newtonian fluid and incompressible flow
ii. Flow domain is a thin film (i.e. € < 1)
lii. Magnetic field is quasi-steady (i.e. Re,, < 1)
Iv. Temporal inertia dominates convective inertia (i.e. ﬁn—ei — 0, Res>1)

4 )

Thin-film MHD Equations

By Op 0%

s ~ - H 2 -
Reor Yo oz e m=0
Dy  Op s 2
S A7 T = H —
Re ot Jr8:1:2 073 +Ha'uz =0

p
i
03

duy Oty  Oug "
0%, 0%y Oy
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4.

Derivation of the MHD Reynolds equation with temporal inertia

Integrate continuity equation over film thickness

where:

5. Use the momentum equations to evaluate above integral

Generalized MHD Reynolds Equation

ot2

V- (ﬁ@jﬁ) = Ha3g_’;l + Resﬁza%

x,t) — 2tanh (Ha@) (“flow conductivity”)
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~ ~

h(&,t) = S1(&,1) — So(&, 1))

S1 = top surface

S> = bottom surface

A Film thickness depends on the topographies of the bounding surfaces
A Digital representation of real surfaces is not trivial

A Properties change with resolution of measuring device

A Scale-independent characterization parameters are desired
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Welerstrass-Mandelbrot fractal
A Fractals can be used to generate scale-invariant topographies
A Possess self-similar structure (asperities upon asperities)

A Construction similar to a Fourier series:

S(z) = g%[ Z AD=2)n (1 _ ") gidn D = fractal dimension

n=—oo

v = frequency density
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Finite Element Method

Weak form

A FEM based on the weak formulation

A No longer have to differentiate K

A Dirichlet boundary conditions built into the solution space

s N [

Solution and Test Spaces

U

{ﬁ(i) e HY () :p(X) =gp VX € I‘D},

%

{v(i) e HY Q) :v(X)=0 Vx € PD},

Weak form of the MHD Reynolds equation
Find p € U such that Vv € V:

- - h 2h
/anpz.vu dQ—]vHaS% dQ—vaResm% dQ =0

w
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